
AWK REFERENCE

AWK Program Execution ...4
Action Statements.. 7
Arrays ...9
Bug Reports.. 15
Command Line Arguments (standard)......................... 2
Command Line Arguments (gawk) 3
Command Line Arguments (mawk) 4
Conversions And Comparisons.................................... 10
Copying Permissions.. 16
Definitions ..2
Environment Variables ...16
Escape Sequences... 7
Expressions ...9
Fields ..6
FTP Information... 16
Historical Features (gawk) .. 16
Input Control.. 11
Lines And Statements... 5
Numeric Functions... 13
Output Control.. 11
Pattern Elements... 7
POSIX Character Classes (gawk)................................ 6
Printf Formats ...12
Records ...6
Regular Expressions... 5
Special Filenames... 13
String Functions... 14
Time Functions (gawk).. 15
User-defined Functions.. 15
Variables ...8

CONTENTS

This reference card was written by Arnold Robbins.Brian
Kernighan and Michael Brennan reviewed it; we thank them for
their help.

Free Software Foundation, Inc.
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA

Phone: +1-617-542-5942
Fax (including Japan): +1-617-542-2652

E-mail: gnu@gnu.org
URL: http://www.gnu.org

Free Software
Source Distributions on CD-ROM

Deluxe Distributions
Emacs, Gawk, Make and GDB Manuals

Emacs and GDB References

OTHER FSF PRODUCTS:

© Copyright 1996-2000, Free Software Foundation
59 Temple Place — Suite 330
Boston, MA 02111-1307 USA

1

This card describes POSIX AWK, as well as the three freely
available awk implementations (seeFTP Infor mation below).
Common extensions (in two or more versions) are printed in light
blue. Features specific to just one version—usually GNU AWK
(gawk)—are printed in dark blue.Exceptions and deprecated
features are printed in red.Features mandated by POSIX are
printed in black.

Several type faces are used to clarify the meaning:
• Courier Bold is used for computer input.
• Times Italic is used to indicate user input and for syntactic

placeholders, such asvariable or action.
• Times Roman is used for explanatory text.

number − a floating point number as in ANSI C, such as3, 2.3 ,
1.4e2 or 4.1E5 .

escape sequences − a special sequence of characters beginning
with a backslash, used to describe otherwise unprintable
characters. (SeeEscape Sequences below.)

string − a group of characters enclosed in double quotes.Strings
may containescape sequences.

regexp − a regular expression, either a regexp constant enclosed in
forward slashes, or a dynamic regexp computed at run-time.
Regexp constants may containescape sequences.

name − a variable, array or function name.

entry(N) − entry entry in section N of the UNIX reference
manual.

pattern − an expression describing an input record to be matched.

action − statements to execute when an input record is matched.

rule − a pattern-action pair, where the pattern or action may be
missing.

DEFINITIONS

Command line arguments control setting the field separator,
setting variables before theBEGIN rule is run, and the location of
AWK program source code.Implementation-specific command
line arguments change the behavior of the running interpreter.

−F fs usefs for the input field separator.
−v var=val assign the value val, to the variablevar, before

execution of the program begins. Such variable
values are available to theBEGIN rule.

−f prog-file read the AWK program source from the file
prog-file, instead of from the first command line
argument. Multiple−f options may be used.

−− signal the end of options.

The following options are accepted by both Bell Labsawk and
gawk (ignored bygawk, not in mawk).

−mf val set the maximum number of fields toval
−mr val set the maximum record size toval

COMMAND LINE ARGUMENTS (standard)

2

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

The following options are specific to gawk. The−Wforms are for
full POSIX compliance.

−−field-separator fs
just like−F

−−assign var=val just like−v
−−file prog-file just like−f
−−traditional
−−compat
−W compat
−W traditional turn off gawk-specific extensions

(−−traditional preferred).
−−copyleft
−−copyright
−W copyleft
−W copyright print the short version of the GNU

copyright information onstdout .
−−help
−−usage
−W help
−W usage print a short summary of the available

options onstdout , then exit zero.
−−lint
−W lint warn about constructs that are dubious

or non-portable to otherawks.
−−lint−old
−W lint−old warn about constructs that are not

portable to the original version of Unix
awk.

−−posix
−W posix disable common and GNU extensions.

Enable interval expressions in regular
expression matching (seeRegular
Expressions below).

−−re−interval
−W re−interval enable interval expressions in regular

expression matching (seeRegular
Expressions below). Useful if
−−posix is not specified.

−−source ’ text’
−W source ’ text’ usetext as AWK program source code.
−−version
−W version print version information onstdout

and exit zero.

In compatibility mode, any other options are flagged as illegal,
but are otherwise ignored.In normal operation, as long as
program text has been supplied, unknown options are passed on
to the AWK program inARGVfor processing. This is most useful
for running AWK programs via the#! executable interpreter
mechanism.

COMMAND LINE ARGUMENTS (gawk)

3

The following options are specific to mawk.

−W dump print an assembly listing of the program
to stdout and exit zero.

−W exec file read program text from file. No other
options are processed. Useful with#! .

−W interactive unbuffer stdout and line buffer
stdin . Lines are always records,
ignoringRS

−W posix_space \n separates fields whenRS = " " .
−W sprintf= num adjust the size ofmawk’s internal

sprintf buffer.
−W version print version and copyright onstdout

and limit information onstderr and
exit zero.

The options may be abbreviated using just the first letter, e.g.,
−We, −Wvand so on.

COMMAND LINE ARGUMENTS (mawk)

AWK programs are a sequence of pattern-action statements and
optional function definitions.

pattern { action statements }
function name(parameter list) { statements }

awk fi rst reads the program source from theprog-file(s), if
specified, from arguments to−−source , or from the first non-
option argument on the command line.The program text is read
as if all theprog-file(s) and command line source texts had been
concatenated.

AWK programs execute in the following order. First, all variable
assignments specified via the−v option are performed.Next,
awk executes the code in theBEGIN rules(s), if any, and then
proceeds to read the files 1 through ARGC − 1 in the ARGV
array. (AdjustingARGCandARGVthus provides control over the
input files that will be processed.)If there are no files named on
the command line,awk reads the standard input.

If a command line argument has the formvar=val, it is treated as
a variable assignment. The variablevar will be assigned the value
val. (This happens after any BEGIN rule(s) have been run.)
Command line variable assignment is most useful for
dynamically assigning values to the variablesawk uses to control
how input is broken into fields and records. It is also useful for
controlling state if multiple passes are needed over a single data
fi le.

If the value of a particular element ofARGVis empty (""), awk
skips over it.

For each record in the input,awk tests to see if it matches any
pattern in the AWK program. For each pattern that the record
matches, the associatedaction is executed. Thepatterns are
tested in the order they occur in the program.

Finally, after all the input is exhausted,awk executes the code in
theENDrule(s), if any.

If a program only has aBEGIN rule, no input files are processed.
If a program only has anENDrule, the input will be read.

AWK PROGRAM EXECUTION

4

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

AWK is a line oriented language. The pattern comes first, and
then the action. Action statements are enclosed in{ and} . Either
the pattern or the action may be missing, but not both. If the
pattern is missing, the action will be executed for every input
record. Amissing action is equivalent to

{ p rint }

which prints the entire record.

Comments begin with the# character, and continue until the end
of the line. Normally, a statement ends with a newline, but lines
ending in a ‘‘,’’ , { , ?, : , && or || are automatically continued.
Lines ending in do or else also have their statements
automatically continued on the following line. In other cases, a
line can be continued by ending it with a ‘‘\’ ’, in which case the
newline will be ignored. However, a ‘‘\’ ’ after a# is not special.

Multiple statements may be put on one line by separating them
with a ‘‘;’ ’. This applies to both the statements within the action
part of a pattern-action pair (the usual case) and to the pattern-
action statements themselves.

LINES AND STATEMENTS

Regular expressions are the extended kind originally defined by
egrep . Additional GNU regexp operators are supported by
gawk. A word-constituent character is a letter, digit, or
underscore (_).

Summary of Regular Expressions
In Decreasing Precedence

(r) regular expression (for grouping)
c if non-special char, matches itself
\ c turn off special meaning ofc
ˆ beginning of string (note:not line)
$ end of string (note:not line)
. any single character, including newline
[...] any one character in ... or range
[ˆ ...] any one character not in ... or range
\y word boundary
\B middle of a word
\< beginning of a word
\> end of a word
\w any word-constituent character
\W any non-word-constituent character
\‘ beginning of a buffer (string)
\’ end of a buffer (string)
r* zero or more occurrences ofr
r+ one or more occurrences ofr
r? zero or one occurrences ofr
r{ n, m} n to m occurrences ofr (POSIX: see note below)
r1| r2 r1 or r2

The r{ n, m} notation is called aninterval expression. POSIX
mandates it for AWK regexps, but mostawks don’t implement it.
Use −−re−interval or −−posix to enable this feature in
gawk.

REGULAR EXPRESSIONS

5

In regular expressions, within character ranges ([...]), the
notation[[: class:]] defines characters classes:

alnum alphanumeric lower lower-case
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space whitespace
digit decimal upper upper-case
graph non-spaces xdigit hexadecimal

POSIX CHARACTER CLASSES (gawk)

Normally, records are separated by newline characters.Assigning
values to the built-in variable RS controls how records are
separated. IfRS is any single character, that character separates
records. Otherwise,RS is a regular expression. (Not Bell Labs
awk.) Te xt in the input that matches this regular expression will
separate the record.gawk setsRT to the value of the input text
that matched the regular expression. Thevalue of IGNORECASE
will also affect how records are separated whenRS is a regular
expression. If RS is set to the null string, then records are
separated by one or more blank lines.WhenRS is set to the null
string, the newline character always acts as a field separator, in
addition to whatever value FS may have. mawk does not apply
exceptional rules toFS whenRS = " " .

RECORDS

As each input record is read,awk splits the record intofields,
using the value of theFS variable as the field separator. If FS is a
single character, fields are separated by that character. If FS is
the null string, then each individual character becomes a separate
field. Otherwise,FS is expected to be a full regular expression.
In the special case thatFS is a single space, fields are separated
by runs of spaces and/or tabsand/or newlines. Leading and
trailing whitespace are ignored.The value ofIGNORECASEwill
also affect how fields are split whenFS is a regular expression.

If the FIELDWIDTHS variable is set to a space separated list of
numbers, each field is expected to have a fixed width, andgawk
will split up the record using the specified widths. The value of
FS is ignored. Assigning a new value toFS overrides the use of
FIELDWIDTHS, and restores the default behavior.

Each field in the input record may be referenced by its position,
$1 , $2 and so on.$0 is the whole record.Fields may also be
assigned new values.

The variableNF is set to the total number of fields in the input
record.

References to non-existent fields (i.e., fields after$NF) produce
the null-string. However, assigning to a non-existent field (e.g.,
$(NF+2) = 5) will increase the value of NF, create any
intervening fields with the null string as their value, and cause the
value of $0 to be recomputed with the fields being separated by
the value ofOFS. References to negative numbered fields cause a
fatal error. Decreasing the value ofNFcauses the trailing fields to
be lost(not Bell Labsawk).

FIELDS

6

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

AWK patterns may be one of the following.

BEGIN
END
expression
pat1, pat2

BEGIN and END are special patterns that provide start-up and
clean-up actions respectively. They must have actions. There can
be multipleBEGIN andENDrules; they are merged and executed
as if there had just been one large rule. They may occur anywhere
in a program, including different source files.

Expression patterns can be any expression, as described under
Expressions.

The pat1, pat2 pattern is called arange pattern. It matches all
input records starting with a record that matchespat1, and
continuing until a record that matchespat2, inclusive. It does not
combine with any other pattern expression.

PA TTERN ELEMENTS

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statement
break
continue
delete array[index]
delete array
exit [expression]
next
nextfile (notmawk)
{ statements }

ACTION STATEMENTS

Within strings constants ("...") and regexp constants (/.../),
escape sequences may be used to generate otherwise unprintable
characters. This table lists the available escape sequences.

\a alert (bell) \r carriage return
\b backspace \t horizontal tab
\f form feed \v vertical tab
\n newline \\ backslash
\ ddd octal valueddd \x hh hex valuehh
\" double quote \/ forward slash

ESCAPE SEQUENCES

7

ARGC number of command line arguments.
ARGIND index in ARGVof current data file.
ARGV array of command line arguments. Indexed

from 0 toARGC− 1. Dynamically changing
the contents ofARGVcan control the files
used for data.

CONVFMT conversion format for numbers, default
value is"%.6g" .

ENVIRON array containing the the current
environment. Thearray is indexed by the
environment variables, each element being
the value of that variable.

ERRNO contains a string describing the error when a
redirection or read forgetline fails, or if
close() fails.

FIELDWIDTHS white-space separated list of fieldwidths.
Used to parse the input into fields of fixed
width, instead of the value ofFS.

FILENAME name of the current input file. If no files
given on the command line,FILENAME is
‘‘ −’’. FILENAME is undefined inside the
BEGIN rule (unless set bygetline).

FNR number of the input record in current input
fi le.

FS input field separator, a space by default (see
Fields above).

IGNORECASE if non-zero, all regular expression and string
operations ignore case.In versions ofgawk
prior to 3.0, IGNORECASEonly affected
regular expression operations and
index() .

NF number of fields in the current input record.
NR total number of input records seen so far.
OFMT output format for numbers,"%.6g" , by

default. Old versions ofawk also used this
for number to string conversion instead of
CONVFMT.

OFS output field separator, a space by default.
ORS output record separator, a newline by

default.
RS input record separator, a newline by default

(seeRecords above).
RT record terminator. gawk setsRT to the input

text that matched the character or regular
expression specified byRS.

RSTART index of the first character matched by
match() ; 0 if no match.

RLENGTH length of the string matched bymatch() ;
−1 if no match.

SUBSEP character(s) used to separate multiple
subscripts in array elements, by default
"\034" . (seeArrays below).

VARIABLES

8

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

An arrays subscript is an expression between square brackets ([
and]). If the expression is a list(expr, expr ...) , then the
subscript is a string consisting of the concatenation of the (string)
value of each expression, separated by the value of theSUBSEP
variable. Thissimulates multi-dimensional arrays. For example:

i = " A"; j = " B"; k = " C"
x[i, j, k] = "hello, world\n"

assigns"hello, world\n" to the element of the arrayx
indexed by the string"A\034B\034C" . All arrays in AWK are
associative, i.e., indexed by string values.

Use the special operatorin in an if or while statement to see
if a particular value is an array index.

if (val in array)
print array[val]

If the array has multiple subscripts, use(i, j) in array .

Use thein construct in afor loop to iterate over all the elements
of an array.

Use thedelete statement to delete an element from an array.
Specifying just the array name without a subscript in thedelete
statement deletes the entire contents of an array.

ARRAYS

Expressions are used as patterns, for controlling conditional
action statements, and to produce parameter values when calling
functions. Expressionsmay also be used as simple statements,
particularly if they hav e side-effects such as assignment.
Expressions mixoperands andoperators. Operands are constants,
fields, variables, array elements, and the return values from
function calls (both built-in and user-defined).

Regexp constants (/ pat/), when used as simple expressions, i.e.,
not used on the right-hand side of˜ and !˜ , or as arguments to
the gensub() , gsub() , match() , split() , and sub() ,
functions, mean$0 ˜ / pat/ .

The AWK operators, in order of decreasing precedence, are

(...) grouping
$ field reference
++ − − increment and decrement, prefix and postfix
ˆ ** exponentiation
+ − ! unary plus, unary minus, and logical negation
* / % multiplication, division, and modulus
+ − addition and subtraction
space string concatenation
< > less than, greater than
<= >= less than or equal, greater than or equal
!= == not equal, equal
˜ ! ˜ regular expression match, negated match
in array membership
&& logical AND, short circuit
|| logical OR, short circuit
?: in-line conditional expression
= += −= * = / = %= ˆ = **=

assignment operators

EXPRESSIONS

9

Variables and fields may be (floating point) numbers, strings or
both. Context determines how the value of a variable is
interpreted. If used in a numeric expression, it will be treated as a
number, if used as a string it will be treated as a string.

To force a variable to be treated as a number, add 0 to it; to force
it to be treated as a string, concatenate it with the null string.

When a string must be converted to a number, the conversion is
accomplished usingatof(3). A number is converted to a string by
using the value of CONVFMTas a format string forsprintf(3),
with the numeric value of the variable as the argument. However,
ev en though all numbers in AWK are floating-point, integral
values arealways converted as integers.

Comparisons are performed as follows: If two variables are
numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a ‘‘numeric string,’’ t hen
comparisons are also done numerically. Otherwise, the numeric
value is converted to a string, and a string comparison is
performed. Two strings are compared, of course, as strings.
According to the POSIX standard, even if two strings are numeric
strings, a numeric comparison is performed. However, this is
clearly incorrect, and none of the three freeawks do this.

Note that string constants, such as"57" , are not numeric strings,
they are string constants. The idea of ‘‘numeric string’’ only
applies to fields, getline input, FILENAME, ARGVelements,
ENVIRON elements and the elements of an array created by
split() that are numeric strings.The basic idea is thatuser
input, and only user input, that looks numeric, should be treated
that way.

Uninitialized variables have the numeric value 0 and the string
value "" (the null, or empty, string).

CONVERSIONS AND COMPARISONS

10

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

close(file) close input file or pipe.
getline set $0 from next input record; setNF,

NR, FNR.
getline < file set$0 from next record offile; setNF.
getline v set v from next input record; setNR,

FNR.
getline v < file setv from next record offile.
cmd | g etline pipe intogetline ; set$0 , NF.
cmd | g etline v pipe intogetline ; set v.
next

stop processing the current input record. Read next input
record and start over with the first pattern in the program.
Upon end of the input data, execute any ENDrule(s).

nextfile
stop processing the current input file. Thenext input record
comes from the next input file. FILENAMEandARGINDare
updated,FNRis reset to 1, and processing starts over with the
fi rst pattern in the AWK program. Upon end of input data,
execute any END rule(s). Earlier versions ofgawk used
next file , as two words. This generates a warning
message and will eventually be removed. mawk does not
currently supportnextfile .

getline returns 0 on end of file, and −1 on an error.

INPUT CONTROL

close(file)
close output file or pipe.

fflush([file])
flush any buffers associated with the open output file or pipe
file. If file is missing, then standard output is flushed.If file
is the null string, then all open output files and pipes are
flushed(not Bell Labsawk).

print
print the current record. The output record is terminated with
the value ofORS.

print expr-list
print expressions. Each expression is separated by the value
of OFS. The output record is terminated with the value of
ORS.

printf fmt, expr-list
format and print (seePr intf Formats below).

system(cmd)
execute the commandcmd, and return the exit status(may
not be available on non-POSIX systems).

I/O redirections may be used with bothprint andprintf .

print "hello" > file
Print data tofile. The first time the file is written to, it will be
truncated. Subsequent commands append data.

print "hello" >> file
Append data tofile. The previous contents of the file are not
lost.

print "hello" | cmd
Print data down a pipeline tocmd.

OUTPUT CONTROL

11

The printf statement andsprintf() function accept the
following conversion specification formats:

%c anASCII character
%d a decimal number (the integer part)
%i a decimal number (the integer part)
%e a floating point number of the form

[−]d.dddddde[+ −]dd
%E like%e, but useE instead ofe
%f a floating point number of the form

[−]ddd.dddddd
%g use%eor %f, whichever is shorter, with

nonsignificant zeros suppressed
%G like%g, but use%Einstead of%e
%o an unsigned octal integer
%u an unsigned decimal integer
%s a character string
%x an unsigned hexadecimal integer
%X like%x, but useABCDEFfor 10–15
%% A l iteral%; no argument is converted

Optional, additional parameters may lie between the%and the
control letter:

− left-justify the expression within its field.
space for numeric conversions, prefix positive values

with a space and negative values with a minus
sign.

+ used before thewidth modifier means to always
supply a sign for numeric conversions, even if
the data to be formatted is positive. The +
overrides the space modifier.

use an ‘‘alternate form’’ f or some control letters.
%o supply a leading zero.
%x, %X supply a leading0x or 0X for a nonzero result.
%e, %E, %f the result always has a decimal point.
%g, %G trailing zeros are not removed.
0 a leading zero acts as a flag, indicating output

should be padded with zeroes instead of spaces.
This applies even to non-numeric output formats.
Only has an effect when the field width is wider
than the value to be printed.

width pad the field to this width. The field is normally
padded with spaces. If the0 flag has been used,
pad with zeroes.

. prec precision. Themeaning varies by control letter:
%d, %o, %i ,
%u, %x, %X the minimum number of digits to print.
%e, %E, %f the number of digits to print to the right of the

decimal point.
%g, %G the maximum number of significant digits.
%s the maximum number of characters to print.

The dynamic width and prec capabilities of the ANSI C
printf() routines are supported.A * in place of either the
width or prec specifications will cause their values to be taken
from the argument list toprintf or sprintf() .

PRINTF FORMATS

12

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

When doing I/O redirection from eitherprint or printf into a
fi le or via getline from a file, all three implementations of
awk recognize certain special filenames internally. These
fi lenames allow access to open file descriptors inherited from the
parent process (usually the shell).These filenames may also be
used on the command line to name data files. Thefi lenames are:

"−" standard input
/dev/stdin standard input(notmawk)
/dev/stdout standard output
/dev/stderr standard error output

The following names are specific to gawk.

/dev/fd/ n fi le associated with the open file descriptorn

Other special filenames provide access to information about the
runninggawk process. Readingfrom these files returns a single
record. Thefi lenames and what they return are:

/dev/pid process ID of current process
/dev/ppid parent process ID of current process
/dev/pgrpid process group ID of current process
/dev/user a single newline-terminated record.

The fields are separated with spaces.
$1 is the return value ofgetuid(2),
$2 is the return value ofgeteuid(2),
$3 is the return value ofgetgid(2) , and
$4 is the return value ofgetegid(2).
Any additional fields are the group IDs
returned bygetgroups(2). Multiple groups
may not be supported on all systems.

These filenames will become obsolete ingawk 3.1. Beaw are
that you will have to change your programs.

SPECIAL FILENAMES

atan2(y, x) the arctangent ofy/x in radians.
cos(expr) the cosine ofexpr, which is in radians.
exp(expr) the exponential function (e ˆ x).
int(expr) truncates to integer.
log(expr) the natural logarithm function (basee).
rand() a random number between 0 and 1.
sin(expr) the sine ofexpr, which is in radians.
sqrt(expr) the square root function.
srand([expr]) uses expr as a new seed for the random

number generator. If no expr, the time of day
is used. Returns previous seed for the
random number generator.

NUMERIC FUNCTIONS

13

gensub(r, s, h [, t])
search the target stringt for matches of the regular expression
r. If h is a string beginning withg or G, replace all matches
of r with s. Otherwise,h is a number indicating which match
of r to replace. If not is supplied,$0 is used instead. Within
the replacement text s, the sequence\ n, wheren is a digit
from 1 to 9, may be used to indicate just the text that
matched thenth parenthesized subexpression. Thesequence
\0 represents the entire matched text, as does the character
&. Unlike sub() and gsub() , the modified string is
returned as the result of the function, and the original target
string isnot changed.

gsub(r, s [, t])
for each substring matching the regular expressionr in the
string t, substitute the strings, and return the number of
substitutions. If t is not supplied, use$0 . An & in the
replacement text is replaced with the text that was actually
matched. Use\& to get a literal&. SeeThe GNU Awk User’s
Guide for a fuller discussion of the rules for&’s and
backslashes in the replacement text of gensub() , sub()
andgsub()

index(s, t)
returns the index of the stringt in the strings, or 0 if t is not
present.

length([s])
returns the length of the strings, or the length of$0 if s is
not supplied.

match(s, r)
returns the position ins where the regular expression r
occurs, or 0 ifr is not present, and sets the values of variables
RSTARTandRLENGTH.

split(s, a [, r])
splits the strings into the arraya using the regular expression
r, and returns the number of fields. If r is omitted,FS is used
instead. The arraya is cleared first. Splitting behaves
identically to field splitting. (SeeFields, above.)

sprintf(fmt, expr-list)
prints expr-list according tofmt, and returns the resulting
string.

sub(r, s [, t])
just like gsub() , but only the first matching substring is
replaced.

substr(s, i [, n])
returns the at mostn-character substring ofs starting ati. If
n is omitted, the rest ofs is used.

tolower(str)
returns a copy of the string str, with all the upper-case
characters instr translated to their corresponding lower-case
counterparts. Non-alphabetic characters are left unchanged.

toupper(str)
returns a copy of the string str, with all the lower-case
characters instr translated to their corresponding upper-case
counterparts. Non-alphabetic characters are left unchanged.

STRING FUNCTIONS

14

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

gawk provides the following functions for obtaining time stamps
and formatting them.

strftime([format [, timestamp]])
formats timestamp according to the specification in format.
The timestamp should be of the same form as returned by
systime() . If timestamp is missing, the current time of
day is used. Ifformat is missing, a default format equivalent
to the output ofdate(1) will be used.

systime()
returns the current time of day as the number of seconds
since the Epoch.

TIME FUNCTIONS (gawk)

Functions in AWK are defined as follows:

function name(parameter list)
{

statements
}

Functions are executed when they are called from within
expressions in either patterns or actions. Actual parameters
supplied in the function call instantiate the formal parameters
declared in the function.Arrays are passed by reference, other
variables are passed by value.

Local variables are declared as extra parameters in the parameter
list. The convention is to separate local variables from real
parameters by extra spaces in the parameter list. For example:

a & b are local
function f(p, q, a, b)
{

.....
}

/abc/ { ... ; f(1, 2) ; ... }

The left parenthesis in a function call is required to immediately
follow the function name without any intervening white space.
This is to avoid a syntactic ambiguity with the concatenation
operator. This restriction does not apply to the built-in functions.

Functions may call each other and may be recursive. Function
parameters used as local variables are initialized to the null string
and the number zero upon function invocation.

Usereturn to return a value from a function. The return value
is undefined if no value is provided, or if the function returns by
‘‘ falling off’ ’ the end.

The word func may be used in place offunction . Note: This
usage is deprecated.

USER-DEFINED FUNCTIONS

If you find a bug in this reference card, please report it via
electronic mail toarnold@gnu.org .

BUG REPORTS

15

The environment variable AWKPATHspecifies a search path to
use when finding source files named with the−f option. The
default path is ".:/usr/local/share/awk" , if this
variable does not exist. (The actual directory may vary,
depending upon how gawk was built and installed.) If a file
name given to the −f option contains a ‘‘/’ ’ character, no path
search is performed.

If POSIXLY_CORRECTexists in the environment, thengawk
behaves exactly as if −−posix had been specified on the
command line.

ENVIRONMENT VARIABLES (gawk)

gawk supports two features of historical AWK implementations.
First, it is possible to call thelength() built-in function not
only with no argument, but even without parentheses.This
feature is marked as ‘‘deprecated’’ i n the POSIX standard, and
gawk will issue a warning about its use if−−lint is specified
on the command line.

The other feature is the use ofcontinue or break statements
outside the body of awhile , for , or do loop. HistoricalAWK
implementations have treated such usage as equivalent to the
next statement. gawk will support this usage if
−−traditional has been specified.

HISTORICAL FEATURES (gawk)

Host:gnudist.gnu.org
File: /gnu/gawk/gawk-3.0.6.tar.gz

GNU awk (gawk). There may be a later version.

Host:netlib.bell-labs.com
File: /netlib/research/awk.bundle.gz

Bell Labsawk. This version requires an ANSI C compiler;
GCC (the GNU C compiler) works well.

Host:ftp.whidbey.net
File: /pub/brennan/mawk1.3.3.tar.gz

Michael Brennan’s mawk. There may be a newer version.

FTP INFORMATION

Copyright © 1996-2000 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of
this reference card provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of
this reference card under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this
reference card into another language, under the above conditions
for modified versions, except that this permission notice may be
stated in a translation approved by the Foundation.

COPYING PERMISSIONS

16

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

Copyright 09-30-00 14:05:14, FSF, Inc. (all)

